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An effective method of reducing base drag on aircraft in supersonic flight regimes 
is organizing combustion in their afterbody by the additional injection of fuel through 
the base. The practical use of this method of controlling base drag makes it important 
to consider the question of allowing for the effect of combustion on the characteristics 
of the flow field in the neighborhood of the body. The study [i] examined the combustion 
of a supersonic injected jet in an afterbody on the basis of the Navier-Stokes equations. 
The effect of diffusion combustion onthe characteristics of separated base flows was 
examined in [2] within the framework of the Chapman-Korst model. 

Here we propose an approximate method of calculating the parameters of an injected 
subsonic jet in a co-current supersonic flow in the presence of diffusion combustion. The 
method is based on a model of the strong viscous-inviscid interaction, through pressure, 
of conjugate inviscid flows with a flow in the viscous region. 

i. Formulation of the Problem and Method of Solution. We are examining a steady flow 
in the two-dimensional wake behind a body. We will use the same formulation as in [3] but 
with allowance for the diffusion combustion of a subsonic injected jet in a supersonic co- 
current flow. In regard to the interacting flows, it is assumed that they each contain 
one reactive component (an oxidant R for the external flow, a fuel A for the injected jet) 
and N components which are nonreactive under the given conditions. When mixed in the mixing 
region and the near wake, the oxidant and fuel enter into a chemical reaction - combustion. 
The latter is described by a reaction of the form 

where S is the reaction product; v i is the stoichiometric coefficient of the i-th component. 
In the given combustion model, the reaction is localized in an infinitely narrow region - 
the flame front [4]. In the mathematical description, this front corresponds to a surface 
of discontinuity of the heat flows and diffusion flows of the reacting components. Use 
of the model of diffusion combustion appreciably simplifies the calculation, since in this 
case it is unnecessary to introduce chemical kinetics and chemical equilibrium constants. 

Features of the problem as formulated include the formation of two flame fronts in 
the aft region of the body in question (in the general case, these fronts are asymmetrical). 
The fronts are directed counter to each other and disappear when they meet due to the com- 
bustion of the fuel in the jet. The presence of two flame fronts in the viscous region 
divides it into three subregions. In the flow region between the fronts, component R is 
absent. Outside this region, component A is absent. The viscous flow is approximately 
described by the equations of a multicomponent, reactive, laminar boundary layer [5], aug- 
mented by the equation of state and the dependences of the transport coefficients on tem- 
perature and the composition of the mixture. The solutions in the respective subregions 
of viscous and inviscid flow are joined together by means of viscous-inviscid interaction 
conditions [3]. These conditions, generalized to the case of chemical reaction and the 
presence of closed separation zones in the viscous region, have the form 

dpe/dx = (A -}- B + C)/D, (1 .1)  
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where A, B, C, and D are determined as follows: 
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Here, c i is the mass concentration of the i-th component; xi and z are the molecular weights 
of the component and the mixture; Sm and Le are the Schmidt and Lewis numbers; a is the 
speed of sound (the rest of the notation was taken from [3]). 

System (i.i) was obtained from the law of mass conservation in the viscous flow region 
and the boundary conditions for the transverse velocity component and the coupled flows. 
Within a broad range of the initial data, system (i.i) has a saddle point when integrated 
together with the Euler equations and boundary-layer equations. The presence of the saddle 
point, which manifests the upstream mechanism of transmission of perturbations, is a conse- 
quence of the slight ellipticity of given problem in the viscous-inviscid interaction model. 
The ellipticity is due to the fact that the problem involves unknown boundaries. Physcially, 
the flow in question corresponds to the singular integral curve of system (i.i). Thus, 
the viscous-inviscid interaction conditions allow us to find the distribution of static 
pressure in the viscous region, construct the boundaries of the coupled inviscid flows, 
and connect the solutions in the respective subregions. 

Calculation of the parameters in the near wake behind the body involves simultaneous 
stepwise integration of the Euler equations, the equations of the boundary layer, and Eqs. 
(1.1). We use an explicit finite-difference scheme [6] to calculate the characteristics 
of the equivalent inviscid flows, while the solution of the equations of viscous-inviscid 
interaction (I.i) is obtained by the Runge-Kutta method. Some difficulties are encountered 
in integration of the equations of a reactive laminar boundary layer. These difficulties 
have to do, on the one hand, with the asymptotic character of the boundary conditions, the 
need to determine the boundaries of the viscous region during the calculations, and the con- 
siderable nonuniformity of the parameters across the flow. On the other hand, the diffi- 
culties are also related to the formation of diffusion flame fronts in the viscous flow 
region. The boundary-layer equations are integrated by an implicit finite-difference scheme 
in normalized von Mises variables [7]: 

= x, ~ = ( ~  - -  ~1(x))/(~2@) - -  ~1@)), 

w h e r e  T i s  t h e  s t r e a m  f u n c t i o n ;  8 T / a y  = y J p u ;  8 T / a x  = - y J p v ;  Tk(X)  i s  t h e  v a l u e  o f  t h e  
s t r e a m  f u n c t i o n  on t h e  c o r r e s p o n d i n g  b o u n d a r y  o f  t h e  v i s c o u s  r e g i o n  y = Yk(X)" Use o f  t h e  
yon Mises variables reduces the number of governing functions, avoids the problems connected 
with satisfaction of the boundary conditions, and automatically condenses the nodes of the 
computing grid in the physical plane in the neighborhood of the boundaries of the viscous 
region. The latter fact makes it possible to more accurately account for the mass brought 
into the viscous region due to viscous drag and to perform calculations with a moderate 
grid number (~50). The unknown values of the stream functions at the nominal boundaries 
of the viscous region are determined from the solution of the system of ordinary differen- 
tial equations 
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In accordance with the chosen model of diffusion combustion, the concentration of reac- 
tive components is zero at the flame front, while their diffusion flows are in a stoichio- 
metric ratio. Also, the heat flows undergo discontinuities at the flame front due to the 
liberation (absorption) of heat in the chemical reaction [4]. Having excluded the concen- 

. g 

tration of the reactive components by means of the reation Ca,R = i-- cs--~_~c~, these condi- 
i=i 

tions are conveniently written in the form 
/ N 

Cs+ ~ ci= I; (1.3) 

t '~  Oci. 
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Here ,  t h e  f l ame  f r o n t  c o r r e s p o n d s  t o  t h e  n o r m a l i z e d  c o o r d i n a t e  ~ = ~ f k ( X ) ;  L = %• 

Conditions (1.3) and (1.5) serve as boundary conditions for the concentrations of the 
reactive components and the total enthalpy at the flame front. Equation (1.4) is used to 
determine the position of the front. The presence of surfaces of discontinuity of the diffusion and 
heat flows in the theoretical region significantly complicates calculation of the characteristics 
of the viscous flow. One of the methods widely used to calculate discontinuities is their isolation. 
In regard to the problem being examined, this approach consists of isolating the flame fronts 
in the theoretical region, which in turn involves its subdivision into three subregions 
containing only one component each. Here, to integrate the boundary-layer equations across 
the viscous region in the presence of a flame front, we resort to the method of "floating" 
discontinuity. This method allows us to calculate the flow field without a substantial 
change in the logic of the "through" computing algorithm [3] while at the same time follow- 
ing the position of the front. Let us take a detailed look at the organization of the calcu- 
lation in this case. At the first stage of the calculations, we assume that the position 
of the flame front in the section x = x n coincides with the m-th interior grid node. In 
solving the diffusion equations for the reactive components by the method of scalar trial 
run, the correction factors for the calculation of total enthalpy at the front are found 
from difference analogs of Eq. (1.5) and the energy equation, written at the (m - l)-st 
and (m + l)-st nodes, The correction factors at the remaining nodes are determined in the 
usual manner. The resulting concentrations of the reactive components are used to calculate 
the error he m in the relation between diffusion flows obtained due to finite-difference ap- 
proximation (1.4). The number of the node m is chosen on the basis of the condition 
hCmACm + i < 0. Here, the position of the flame front turns out to be associated with the 
error 0(Aq). At the second stage of the calculations, to refine the position of the flame 
front we introduce the parameter Aqf = qf - qm" The value of this parameter is found from 
ACf = 0F As before, Eqs. (1.3) and (1,5) serve to determine the correction factors at the , 
m-th node. For example, using linear interpolation, from (1.3) we obtain 

(1 + tl) Csm - -  t l ~ m - ~  = 1 - -  ~I, ( 1 . 6 )  

N 

where t f  = Anf/A~; ~ =  ~ e i ~ ;  , S =  (1 - t f ) ~ +  t f ~ +  1. I t  i s  e a s y  t o  use  ( 1 . 6 )  t o  
i = 1  

obtain the correction factors at the m-th node for theconcentrations. Difference approxi- 
mation of Eqs. (1.4) and (1.5) with y = Ym + Ayf, using a linear interpolation of type (1.6), 
makes it possible to find the correction factors for total enthalpy at the m-th node and 
to determine A~f. 

2. Some Results of the Calculations. Within the framework of the viscous-inviscid 
interaction model, we evaluated the effect of chemical nonuniformity and diffusion combus- 
tion on the characteristics of laminar flow behind a plate in a supersonic flow in the presence 
of subsonic aft injection. As the external flow, we examined air. The latter was modeled 
in the calcuations by a two-component mixture of gases containing 23% O= and 77% N 2. We 
initially studied the effect of the molecular weight of the injected jet on the distribution 
of static pressure in the near wake. The subsonic jet was assumed to consist of one com- 
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p o n e n t  and was a s s i g n e d  an i n t e n s i t y  o f  u n i f o r m  i n j e c t i o n  e q u a l  t o  qv = PVUV/P~ u~ in  t he  
c r o s s  s e c t i o n  o f  t h e  a f t  r e g i o n  o f  t h e  body.  I n  t h e  c a l c u l a t i o n s ,  t h e  dependences  o f  t h e  
t r a n s p o r t  c o e f f i c i e n t s  o f  t h e  p u r e  components  on t e m p e r a t u r e  were d e t e r m i n e d  from t h e  power 
law in  [ 8 ] ,  w h i l e  a p p r o x i m a t e  r e l a t i o n s  in  [8] were used  t o  f i n d  t h e  same c o e f f i c i e n t s  f o r  
t h e  m i x t u r e  and t h e  g e n e r a l i z e d  d i f f u s i o n  c o e f f i c i e n t s .  F i g u r e  1 shows t h e o r e t i c a l  d i s t r i -  
b u t i o n s  o f  s t a t i c  p r e s s u r e  in  t h e  v i s c o u s  r e g i o n  in  t h e  c a s e  o f  a p l a t e  in  a s y m m e t r i c a l  
u n i f o r m  e x t e r n a l  f l o w  w i t h  M~ = 3 .5  and qv = 0 . 0 2 .  C a l c u l a t e d  c u r v e s  1 and 2, c o r r e s p o n d -  
ing  t o  t h e  i n j e c t i o n  o f  h e l i u m  and n i t r o g e n ,  a g r e e  s a t i s f a c t o r i l y  w i t h  t h e  e x p e r i m e n t a l  
d a t a  in  [9]  (shown by p o i n t s ) .  

We s t u d i e d  t h e  e f f e c t  o f  t h e  d i f f u s i o n  f low o f  h y d r o g e n  on base  p r e s s u r e .  The j e t  
was assumed t o  c o n s i s t  o f  t h r e e  componen t s .  We chose  h y d r o g e n  as t h e  r e a c t i v e  component ,  
w h i l e  t h e  n o n r e a c t i v e  components  unde r  t h e  g i v e n  c o n d i t i o n s  were  m o l e c u l a r  n i t r o g e n  and 
w a t e r  v a p o r .  F i g u r e  2 shows t h e  e f f e c t  o f  qv on base  p r e s s u r e  in n o n s y m m e t r i c a l  f l ow a b o u t  
t h e  p l a t e .  The c a l c u l a t i o n s  were p e r f o r m e d . f o r  a c o l d  j e t  (T~ = T~ = T~, T1 = T2 = 300 
K) w i t h  t he  Reyno lds  number c a l c u l a t e d  from the  p a r a m e t e r s  o f  t h e  u n d i s t u r b e d  f low and t h e  
p l a t e  w i d t h  (Re = 500 ) ,  t h e  Math numbers  in  t h e  bo t tom and t op  f l ows  (Mz = 2, M 2 = 4 ) ,  and 
s t a t i c  p r e s s u r e  in  t h e  u n d i s t u r b e d  i n v i s c i d  f l o w s  Pz = P2 = 3-039"104 N/m2. The i n i t i a l  
and b o u n d a r y  v a l u e s  o f  t h e  c o n c e n t r a t i o n s  o f  t h e  components  in  t h e  j e t :  c N = 0 . 5 ,  c H 0 = 

2 
1 - CN2 - OH2. Curves  1-3 c o r r e s p o n d  t o  CH2 = 0 . 1 ;  0 . 0 5 ;  0 . 0 1 .  The p o s i t i o n s  o f  t h e  f~ame 

f r o n t s  in  t h e  v i s c o u s  r e g i o n  f o r  t h e  p r e s e n t  example a r e  shown in  F i g .  3. A n a l y s i s  o f  t he  
r e s u l t s  p e r m i t s  t h e  f o l l o w i n g  c o n c l u s i o n s .  An i n c r e a s e  in  t h e  c o n c e n t r a t i o n  o f  hyd rogen  
in the jet has a significant effect on base pressure and leads to its increase within the 
investigated range of injection intensity. With an increase in hydrogen concentration, 
each of the flame fronts is shifted across the viscous region in the direction of the re- 
spective boundary. 
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